

Wide Range of Customer Trainings

Continuous learning pays rich dividends – Rieter offers training on several topics being conducted by professional Rieter trainers who bring along decades of experience in the textile industry with a very strong passion to impart learning.

Customers can choose trainings on-site in their spinning mill, called INmill trainings, or trainings in Rieter facilities in Europe or China, called INclass trainings. For both options, there are four categories of trainings: Machine training, electrical training, process management and mill management. Last but not least, Rieter offers mass-customized trainings as per customer needs.

Training modules	INmill	INclass
Machine training		
Blowroom	•	•
Carding	•	•
Draw frame	•	•
OMEGAlap and comber	•	•
Roving frame	•	•
Ring and compact spinning	•	•
Semi-automatic rotor spinning	•	•
Automatic rotor spinning	•	•
Air-jet spinning	•	•
Autoconer	•	•
Autoconer Preci FX		•
Electrical training		
Electrical training general		•
Electrical Autoconer	•	•
Process management		
Fiber preparation		•
Spinning preparation	•	•
Roving spinning	•	•
Rotor spinning		•
Air-jet spinning		•
Process control techniques in spinning		•
Mill management		
Mill economics		•
Mill management summit		•

Training Methodology

Over 50% of the time on the machine enables customers to address their current performance issues leading to immediate results.

INclass training locations

• Introduction

- · Technological purpose and functioning of blowroom machines
- Understanding the function and machine details of UNIfloc

Day 2

- · Practical machine adjustment of UNIfloc
- · Importance of air measurement and STOP-GO ratio in blowroom
- Understanding the function and machine details
- · Understanding of VARIOset and its adjustment
- · Practical machine adjustment and air measurement on UNIclean
- · UNImix function and basic adjustment

Day 3

- measurement on UNImix
- UNIstore machine details, air adjustment, and understanding of machine parameters
- · Quality check nep count/SFC
- Waste analysis

Duration:

- 3 days for standard blowroom
 - + one additional day in case of UNIblend installation
- + one additional day for UNIcontrol in case of more than 2 blowroom lines

Target audience:

- · Mechanical and electrical technicians, foreman, fitters
- · Supervisors, engineers from production, quality, maintenance and utility departments

Number of participants:

- Up to a maximum of 10
- INmill ✓
- INclass ✓

- · Practical machine adjustment and air

Scan here and register for your training:

l.ead.me/be3nZo

• In case UNIblend is available

+ 1

- Working principle of UNIblend (blending principle)
- · Calibration and adjusting dosing
- · Adjusting the monitoring unit
- · Process optimization in UNIblend
- Air adjustment

• For UNIcontrol - for blowroom line with more flexibility

- Understanding blowroom layout (lines)
- · Understanding and reading electrical schema
- · Display parameters from UNIcontrol

- Introduction basic function of carding
- Technological purpose and functioning of the machine
- Technical terms related to carding machine
- Basic calculations production/batt weight/ draft/NRE
- Parameters influencing sliver quality

Day 2

- Machine setting influencing sliver quality and waste generation in card
- Mechanical and technological adjustments, drives, change points, gearing plans and pneumatic plans
- Important components and their setting IGS classic/IGS top
- Understanding the function of the autoleveller and its calibration method

Day 3

- · Wire maintenance on the card machine
- Coiler adjustments
- Preventive maintenance and safety regulations
- Operator work practices standard procedure for starting the machine and stopping the carding machine.
- Understanding sliver quality parameters like A%, CV%
- Sliver nep report and its analysis

Duration:

• 3 days

Target audience:

- Mechanical and electrical technicians, foreman, fitters
- Supervisors, engineers from production, quality, maintenance and utility departments

Number of participants:

• Up to a maximum of 10

■ INmill ✓

■ INclass ✓

Scan here and register for your training:

Day 1 Introduction to draw frame

- Technology of draw frame/basic calculations production/draft
- Sub assembly in detail draw frame
- Day 2 Technology of autolevelling
 - · Calibration and adjustments autoleveller
 - Auto leveling adjusting LAP, levelling intensity, slow speed adaption
 - Levelling adjustments for quality reasons
 - Technology of RQM
 - Understanding of quality parameters like A%;
 CV%; spectrogram and thick places
 - Display parameters/maintenance and safety aspects
 - · Open discussion and test

Duration:

• 3 days for draw frame

Target audience:

- Mechanical and electrical technicians, foreman, fitters
- Supervisors, engineers from production, quality, maintenance and utility departments

Number of participants:

• Up to a maximum of 10

■ INmill ✓

■ INclass ✓

Scan here and register

l.ead.me/be3nZd

 $Rieter's \ Autoleveler \ Draw \ Frame \ RSB-D \ 55 \ for \ stable \ operation \ with \ high \ quality \ and \ productivity$

Day 3

OMEGAlap (lap former) training topics

Day 1 Introduction to combing – basic textile

- Technological purpose and functioning of the machines
- Technical terms related to lap former machine
- Basic calculations production/lap weight, gms/m / draft

Day 2

- Parameters influencing lap formation
- · Doffing cycle in detail
- Mechanical and technological adjustments, drives, change points, gearing plans,
- · Pneumatic circuit of the machine
- Preventive maintenance and safety regulations

Day 3

- Working principle difference between E 32/E 35/E 36
- Assembly and subassembly, important components and its setting
- Change the winding belt and it's calibration, winding pressure E 32/E 35/E 36
- Tension in calendar rolls, adjusting the drafting system
- Knowledge of clutch, maintenance, checking air gap

Comber training topics

Day 4 Introduction and necessity of combing machine

- Technical terms related to combing machines
- Parameters influencing combing operation
- Noil extraction theory
- Practical adjustment on the machine

Day 5

- Basic calculations production/noil%/draft
- Programming of the machine configuration/ description of machine menu
- Preventive maintenance and safety regulations
- Understanding of gearing diagram and pneumatic panel
- Assembly and subassembly

Day 6

- Yarn count change procedure/technical formulae
- Comber ROBOlap basic principle/settings
- · General discussion and question answers
- · All pending points/exam

+ 1 Additional day in case of SERVOlap installation

- SERVOlap layout and positioning of the machine
- Introduction and working principle of SERVOlap
- · Introduction of display parameters
- · Important components and its setting
- Initialization and referencing of SERVOlap

Duration:

- 6 days for OMEGAlap and comber without SERVOlap
- + one additional day in case of SERVOlap

Target audience:

- Mechanical and electrical technicians, foreman, fitters
- Supervisors, engineers from production, quality, maintenance and utility departments

Number of participants: Up to a maximum of 10

■ INclass ✓

Scan here and register for your training:

• Introduction to roving machine

- Technological purpose and functioning of the machine
- Functioning/working principle of the individual working parts

Day 2

- Mechanical and technological adjustments, drives, change points, gearing plan
- Explanation of the pneumatic, electrical and electronic systems
- Explanation of all the settings on the machine's control panel

Day 3

- Introduction to all tools supplied along with machine
- · Preventive maintenance and safety regulations
- General discussion and question answers
- · All pending points/test

Duration:

• 3 days

Target audience:

- Mechanical and electrical technicians, foreman, fitters
- Supervisors, engineers from production, quality, maintenance and utility departments

Number of participants:

- Up to a maximum of 10
- INmill ✓
- INclass ✓

Scan here and register

- Introduction to ring and compact spinning machines – basic textile (calculation of yarn count/draft/twist etc.)
- Technological purpose and functioning of the machines
- Introduction to ring spinning machine (G/K)

Day 2

- Functioning/working principle of the individual working parts
- Mechanical and technological adjustments, drives, change points, gearing plan
- Technological components (cots/aprons/ring/ traveller) and its importance/maintenance schedule and service life of technological components

Day 3

- Introduction to all tools supplied along with the machine
- Explanation of the pneumatic, electrical and electronic systems

Day 4

- Programming of the machine configuration/ description of machine menu's
- Preventive maintenance and safety regulations
- Yarn quality IPI/strength/hairiness/spectrogram; action required based on interpretation of quality report

Day 5

- · Yarn count change procedure/technical formula
- Do's and don'ts for operators/technical team
- General discussion and question and answers
- · All pending points/test

Duration:

• 5 days

Target audience:

- Mechanical and electrical technicians, foreman, fitters
- Supervisors, engineers from production, quality, maintenance and utility departments

Number of participants:

- Up to a maximum of 10
- INmill ✓

■ INclass ✓

Machine training with tutor Mr. Martin Frehner

Scan here and register for your training:

Lead me/he3n7a

- Introduction basic textile
- (calculation of yarn count/draft/twist/etc.)
- Technological purpose and functioning of the machine
- · Introduction to rotor spinning machine

Day 2

- Functioning/working principle of the individual working parts
- Mechanical and technological adjustments, drives, change points, gearing plan
- Technological components (rotor/opening roller/ nozzle/twist segment) and their importance/ maintenance schedule and service life of technological components

Day 3

- Introduction to all tools supplied along with the machine
- Explanation of the pneumatic, electrical and electronic systems
- Understanding of yarn clearer Q 10/Q 20

Day 4

- Programming of the machine configuration/ description of machine display parameters
- Preventive maintenance and safety regulations
- Yarn quality IPI/strength/hairiness; action required based on interpretation of the quality report

Day 5

- · Yarn count change procedure/technical formula
- Do's and don'ts for operators/technical team
- General discussion and question answers
- · All pending points/test

Duration:

• 5 days

Target audience:

- Mechanical and electrical technicians, foreman, fitters
- Supervisors, engineers from production, quality, maintenance and utility departments

Number of participants:

- Up to a maximum of 10
- INmill ✓

■ INclass ✓

Scan here and register

- · Introduction to rotor spinning machine
- Technological purpose and functioning of the machine
- Preventive maintenance and safety regulations

Day 2

- Functioning/working principle of the individual working parts
- Mechanical and technological adjustments, drives, change points, gearing plan
- Technological components (rotor/opening roller/ nozzle/twist segment) and their importance/ maintenance schedule and service life of technological components

Day 3

- Introduction to all tools supplied along with the machine
- Explanation of the pneumatic, electrical and electronic systems
- · Understanding of yarn clearer

Day 4

- Programming of the machine configuration/ description of the machine and robot menu
- In-depth robot training such as how to improve the performance of the robot (efficiency)
- Piecing parameters adjustment for better piecing strength and appearance

Day 5

- · Yarn count change procedure/technical formula
- Do's and don'ts for operators
- General discussion and question answers
- · All pending points/test

Duration:

• 5 days

Target audience:

- Mechanical and electrical technicians, foreman, fitters
- Supervisors, engineers from production, quality, maintenance and utility departments

Number of participants:

- Up to a maximum of 10
- INmill ✓

■ INclass ✓

Automatic rotor machine training

Scan here and register for your training:

l.ead.me/be3nZo

- Introduction
- · Air-jet spinning machine with several videos
- · Machine overview on the machine
- · Review of the learning and group discussions

Day 2

- · Process optimization
- Recommendations, sliver preparation and impacts, spinning variables, critical settings in spinning units, etc.
- Spin unit settings on the machine

Day 3

Machine settings

- Various systems such as suction, pneumatic, tube loader, etc.
- · Deep dive into Q-sensor and quality monitoring
- · Review and group discussions

Day 4

Introduction to robots

- In-depth robot training such as how to improve the performance of the robot (efficiency)
- Practical training on the machines specific to robots

Day 5

- Deep dive into maintenance topics
- Do's and don'ts, trouble shooting techniques, best practices, handling machine display and robot display, etc.
- Review of all topics and group discussions

Duration:

• 5 days

Target audience:

- Mechanical and electrical technicians, foreman, fitters
- Supervisors, engineers from production, quality, maintenance and utility departments

Number of participants:

- Up to a maximum of 10
- INmill ✓
- INclass ✓

Air-jet machine training

Scan here and register

l.ead.me/be3nZd

- Introduction
- · Autoconer types, models and their functions
- Technological purpose and functioning of winding machines
- Explanation of the basic layout

Day 2

- Functioning/working principle of the individual working parts
- Mechanical and technological adjustments and explanation about sub assemblies of Autoconer
- Technological components (drum, splicer and FX products) and technological information of various parameters on winding system

Day 3

- Introduction to all tools supplied along with the machine
- Explanation of the pneumatic, electrical and electronic systems
- Understanding of parameter of machine display
- Package engineering type of winding and package structure

Day 4

- Programming of the machine configuration/ description of machine menu
- Preventive maintenance, importance/ maintenance schedule and service life of technological components and safety regulations
- Machine performance optimization of machine setting and action required based on interpretation of reports

Day 5

- · Lot change procedure
- Do's and don'ts for operators/technical team
- General discussion and question answers
- Q&A

Duration:

• 5 days

Target audience:

- Mechanical and electrical technicians, foreman, fitters
- Supervisors, engineers from production, quality, maintenance and utility departments

Number of participants:

- Up to a maximum of 10
- INmill ✓

■ INclass ✓

Autoconer machine training

Scan here and register

l.ead.me/be3nZd

• Introduction

- Autoconer types and models
- Precifx introduction and working principal
- Types of winding and its properties

Day 2

- Explanation of machine display menus related with Precifx (pitch, symmetric ratio and geometry, etc.)
- Preci FX winding unit settings and check points
- Explanation of importance of Preci FX
- Various application of Preci FX and its setting optimization

Day 3

Package engineering

- Type of windings and package structures in detail
- · Package quality analysis
- Preventive maintenance, importance or maintenance schedule and service life of Preci FX components
- · Safety regulations and do's and don'ts
- General discussion and question answers
- · All pending points, test

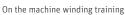
Duration:

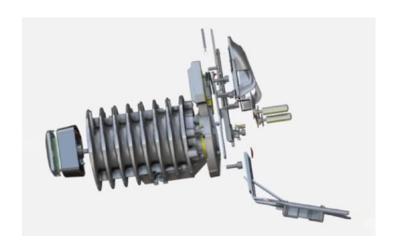
• 3 days

Target audience:

- Mechanical and electrical technicians, foreman, fitters
- Supervisors, engineers from production, quality, maintenance and utility departments

Number of participants:


- Up to a maximum of 10
- INmill ✓
- INclass ✓


Scan here and register for your training:

l.ead.me/be3nZo

Day 1 Blowroom training

- UNIcontrol settings and explaining of the processes
- UNIfloc programming and settings
- Explanation of the electrical schematic of each blowroom machine
- Practical training and safety regulation on the machines

Day 2 Card training

- Card leveling function and settings
- · Programming and explaining the test program
- Practical training and safety regulation on the machines

Day 3 Draw frame training

- Explanation of the pneumatic, electrical and electronic systems
- Leveling function and settings
- Programming of the machine and safety regulation on the machine
- · Practical training

OMEGAlap/Comber and SERVOlap training

- Explanation of the pneumatic, electrical and electronic systems
- Programming of the machine and safety regulation on the machines
- · Practical training

SPIDERweb or ESSENTIALmonitor training

- Basics of network technology
- Data analysis of the individual machines
- Troubleshooting
- · Questions and answers

Duration:

• 5 days

Target audience:

- Electrical technicians, foreman, fitters
- Supervisors, engineers from the electrical or electronics department

Number of participants:

- Up to a maximum of 10
- INmill ✓
- INclass ✓

Classroom training with tutor Mr. Jürg Hug

Scan here and register

l.ead.me/be3nZd

Day 4

Day 5

Introduction

- · Autoconer types, models and their functions
- Explanation of the machine layout
- Explanation of the electrical basic layout
- Functioning/working principle of winding units components
- Explanation of machine display menus related with electrical
- Explanation of game boy functions

Day 2

- Software update procedures and methods
- Programming of the machine configuration
- Trouble shooting and maintenance activities
- Important of quality power supply and safety measures
- General discussion and question answers
- Questions and answers

Duration:

• 2 days

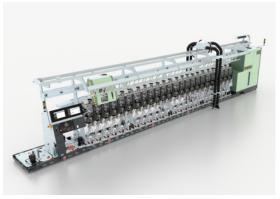
Target audience:

- Electrical technicians, foreman, fitters
- Supervisor, engineers from the electrical or electronics department

Number of participants:

• Up to a maximum of 10

■ INmill ✓


■ INclass ✓

Scan here and register for your training:

Classroom training with tutor Mr. Willen

On the machine training

Customer values

- Obtain techno-economic advantage
- Balancing cost and quality requirements for better profitability
- Quick response to technology changes
- Avoidance of production losses
- · Instant stability in operation
- · Trouble-free operation

Day 1

- $\boldsymbol{\cdot}$ Need of opening, cleaning, blending and mixing
- Understanding the definition of degree of cleaning and cleaning efficiency
- Factors influencing the degree of cleaning and cleaning efficiency
- Air measurement and adjustment and its role in achieving required degree of cleaning
- Understanding the role of ambient climate in blowroom performance

Day 2

- Raw material management, fiber testing and its interpretation
- Bale laydown and does and don'ts for bale laydown
- Understanding what is Stop/Go ratio in blowroom and its importance in quality consistency
- Machine optimization based on waste analysis

Duration:

• 3 days

Target audience:

 Supervisors and above – production, quality, maintenance, utility

Number of participants:

- Up to a maximum of 10 15
- INmill ✓
- INclass ✓

Day 3

- Infeed material requirement for better carding performance
- Carding machine setting based on waste analysis
- Sliver testing and test report interpretation doing neps report analysis
- Trouble shooting nep removal efficiency/fiber damage
- Role of wire maintenance in overall carding performance

Scan here and register

Customer values

- Obtain techno-economic advantage
- Balancing cost and quality requirements for better profitability
- · Quick response to technology changes
- Avoidance of production losses
- · Instant stability in operation
- · Trouble-free operation

Day 1

- Introduction to draw frame optimization
- Selecting the right sliver hank/number of drawing processes
- Choosing a draft distribution/a number of doublings in the draw frame
- Selection of technological components and machine setting
- Technology and working principle of autolevelling
- Auto levelling adjusting LAP, levelling intensity, slow speed adaption

Day 2

- Technology and working principle of RQM
- Understanding of quality parameters like A%; CV%; spectrogram and thick places
- Quality report interpretation (CV%/spectrogram analysis)
- Number of drawing processes/draft distribution/number of doublings in draw frame
- Roller setting/selection of components

Duration:

• 3 days

Target audience:

 Supervisors and above – production, quality, maintenance, utility

Number of participants:

• Up to a maximum of 10 – 15

■ INmill ✓

■ INclass ✓

Day 3

- Pre-comber draft distribution
- Deciding the right lap weight based on fiber length and fiber fineness
- Factors influencing lap quality and producing optimum lap for better combing
- Selecting the setting on comber feed amount/feed type/noil%
- Understanding and optimizing noil%, analysis of noil, combing efficiency
- Best work practices in draw frame/combing preparation and comber

Scan here and register

Customer values

- Obtain techno-economic advantage
- Balancing cost and quality requirements for better profitability
- · Quick response to technology changes
- Avoidance of production losses
- · Instant stability in operation
- · Trouble-free operation

Day 1

- Choosing the right roving hank/twist
- Understanding the role of the bobbin speed curve on roving stretch
- · Best work practices in roving frame
- Importance of utilization/efficiency of ring/compact spinning machine in cost management
- Factors deciding twist multiplier/draft distribution/ roller setting

Day 2

- Factors influencing end down in spinning machine
- · Choosing the right ring traveller weight and profile
- Understanding cop build-up/speed curve
- Understanding of spinning geometry spinning triangle/spinning length and spinning angle
- Technological components (cots/aprons/ring/ traveller), maintenance schedule, and service life of technological components

Duration:

• 3 days

Target audience:

 Supervisors and above – production, quality, maintenance, utility

Number of participants:

• Up to a maximum of 10 – 15

■ INmill ✓

■ INclass ✓

Day 3

- · Working principle of compacting
- Yarn quality IPI/strength/hairiness; action required based on interpretation of the quality report
- Understanding and reading quality reports, keys factors for quality consistency
- Doffing and start-up process optimization factors affecting start-up breaks
- Humidification/Rieter recommendation and its impact on machine performance

Scan here and register for your training:

Customer values

- Obtain techno-economic advantage
- Balancing cost and quality requirements for better profitability
- Quick response to technology changes
- Avoidance of production losses
- · Instant stability in operation
- · Trouble-free operation

Day 1

- · Raw material management for required yarn quality
- Setting of a fiber preparation (ABC) for rotor spinning
- Choosing the number of draw frame passages, right sliver hank, and draft distribution in the draw frame for the rotor spinning process
- Best work practices

Day 2

- Selection of technological components based on raw material and yarn quality requirements
- Understanding the role of yarn piecing in rotor spinning
- Optimizing yarn piecing strength and appearance
- · Frequently committed mistakes in rotor spinning

Duration:

• 3 days

Target audience:

 Supervisors and above – production, quality, maintenance, utility

Number of participants:

- Up to a maximum of 10 15
- INmill ✓
- INclass ✓

Day 3

- Understanding the role and working principle of yarn clearer
- Yarn testing IPI, strength, hairiness, etc.,
- action required for quality improvement
- Means to improve productivity in rotor spinning with required yarn quality
- Humidification/Rieter recommendation and its impact on machine performance

Scan here and register

l.ead.me/be3nZo

Customer values

- Obtain techno-economic advantage
- Balancing cost and quality requirements for better profitability
- · Quick response to technology changes
- Avoidance of production losses
- · Instant stability in operation
- · Trouble-free operation

Day 1

- · Raw material management for required yarn quality
- Setting of a fiber preparation (ABC) for air-jet spinning
- Choosing the number of draw frame passages, right sliver hank, and draft distribution in the draw frame for the air-jet spinning process.
- Best work practices

Day 2

- Selection of technological components based on raw material and yarn quality requirements
- Service life of technological components
- Understanding the role of yarn piecing in air-jet spinning
- Optimizing yarn piecing strength and appearance
- Frequently committed mistakes in air-jet spinning

Duration:

• 3 days

Target audience:

• Supervisors and above – production, quality, maintenance, utility

Number of participants:

- Up to a maximum of 10 15
- INmill ✓
- INclass ✓

Day 3

- Understanding the role and working principle of yarn clearer
- Yarn testing IPI, strength, hairiness, etc., action required for quality improvement
- Means to improve productivity in air-jet spinning with required yarn quality
- Humidification/Rieter recommendation and its impact on machine performance

Scan here and register

Process Management Process control techniques in spinning

Day 1

- Raw material management, fiber testing and interpretation
- Understanding the definition of the degree of cleaning and cleaning efficiency
- · Blowroom setting based on trash analysis
- · Air measurement and adjustment and its role in achieving the required degree of cleaning
- Understanding the Stop/Go ratio in blowroom and its importance in quality consistency

Day 2

- · Carding machine setting based on waste analysis
- Sliver testing and test report interpretation doing neps report analysis
- Trouble shooting nep removal efficiency/fiber damage
- Auto levelling adjusting LAP, levelling intensity, slow speed adaption
- · Technology and working principle of RQM
- Understanding of quality parameters like A%; CV%; spectrogram and thick places, quality report interpretation (CV%/spectrogram analysis)

Day 3

- · Pre-comber draft distribution
- Deciding the right lap weight based on fiber length and fiber fineness
- Factor influencing lap quality and producing optimum lap for better combing
- Selecting the setting on comber feed amount/feed type/noil%
- Understanding and optimizing noil%, analysis of noil, combing efficiency

Day 4

- · Choosing the right roving hank/twist
- Understanding the role of the bobbin speed curve on roving stretch
- · Choosing the right ring traveller weight
- Understanding cop build-up/Speed curve
- Yarn quality IPI/Strength/Hairiness; action required based on interpretation of the quality report

Duration:

• 5 days

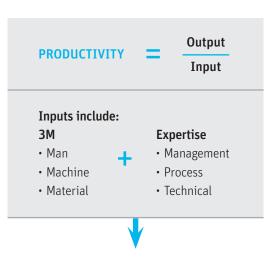
Target audience:

 Supervisors and above – production, quality, maintenance, utility

Number of participants:

- Up to a maximum of 10 15
- INmill ✓
- .
 - INclass **>**

Scan here and register for your training:


l.ead.me/be3nZo

Day 5

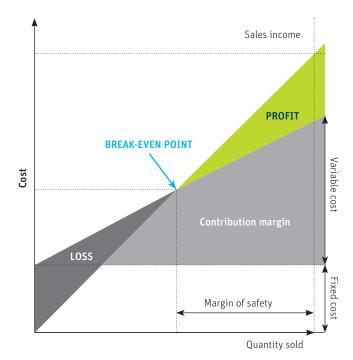
- Humidification/Rieter recommendation and its impact on machine performance (temperature/relative humidity and air changes)
- Selection of the right accessories (sliver can/bobbins/spinning tubes) and their impact on the mill performance
- Material handling understanding of FIFO and the need for channelization in quality consistency

Mill management is key to obtain techno-economic advantages and respond to technology changes.

Increase of productivity

- machine productivity
- labour productivity

Optimization and consistency of yarn quality
Statistics for textile spinning


Reduction of the conversion costs

Better utilization of machines Optimization of technology components lifetime

Training content

- Textile market scenario and challenges in spinning
- Understanding cost and quantity relationship (capacity utilization and efficiency)
- Importance of cost of conversion in profitability
- · Understanding of clean raw material cost
- Role of waste analysis and waste composition in cost of conversion.
- Role of climatic conditions on spinning mill productivity
- Understanding of process optimization/spin plan calculation/air measurement
- Understanding textile testing testing reports and their interpretation.

The Mill Economics training features simple breakeven analysis and teaches how to increase the margin of safety and thus, the mill competitiveness.

Impact of training

- Better understanding of raw material results in consistent yarn quality
- Less yarn buyers complaints
- Reduced yarn clearer cuts on winding machines, resulting in reduced operating cost for winding
- A good spinning mill produces good quality, but the best spinning mill always produces the same quality
- Reduced conversion costs with better work practices
 - Optimization of opening and cleaning machines to reduce good fiber loss
 - Machine cleaning pressure started using 4 bar instead of 6 bar
 - Rapid analysis of machine and production data
 - Optimized speed curve and end brake rate on ring/compact spinning for higher productivity
 - Better understanding of cleaning requirements to reduce clearer cuts in winding process

Scan here and register

l.ead.me/be3nZo

Duration:

• 3 or 5 days

Target audience:

 Supervisors, middle management and above from production, quality, maintenance, utility

Number of participants:

- Up to a maximum of 10 to 15
- INmill ✓
- INclass ✓

Mill economics classroom training

Raw material and yarn realization

Factors affecting clean raw material cost per $\ensuremath{\mathrm{kg}}$ of yarn

- Welcome
- Introduction to Rieter and market information
- Introduction to Rieter blowroom concept
- · Process control techniques in carding
- Wire maintenance with IGS

Day 2

- Draw frame optimal sliver quality
- Combing system highest sliver quality noil influencing factor
- Automation in combing ROBOlap and SERVOlap
- · Lunch with Rieter management team

Day 3

- Mill Economics more with less
- After sales Performance Optimization Services
- Surprise event out of Rieter premises followed by dinner

Day 4

- Compacting devices the new generation in yarn compacting
- Ring yarn high quality yarns produced with high flexibility
- Ring traveller enjoy performance
- Rieter Autoconer More production with superior yarn quality

Day 5

- Rieter recycling system recycling pre- and post consumer goods
- ESSENTIAL the all in one mill management system
- · Feedback and farewell

Duration:

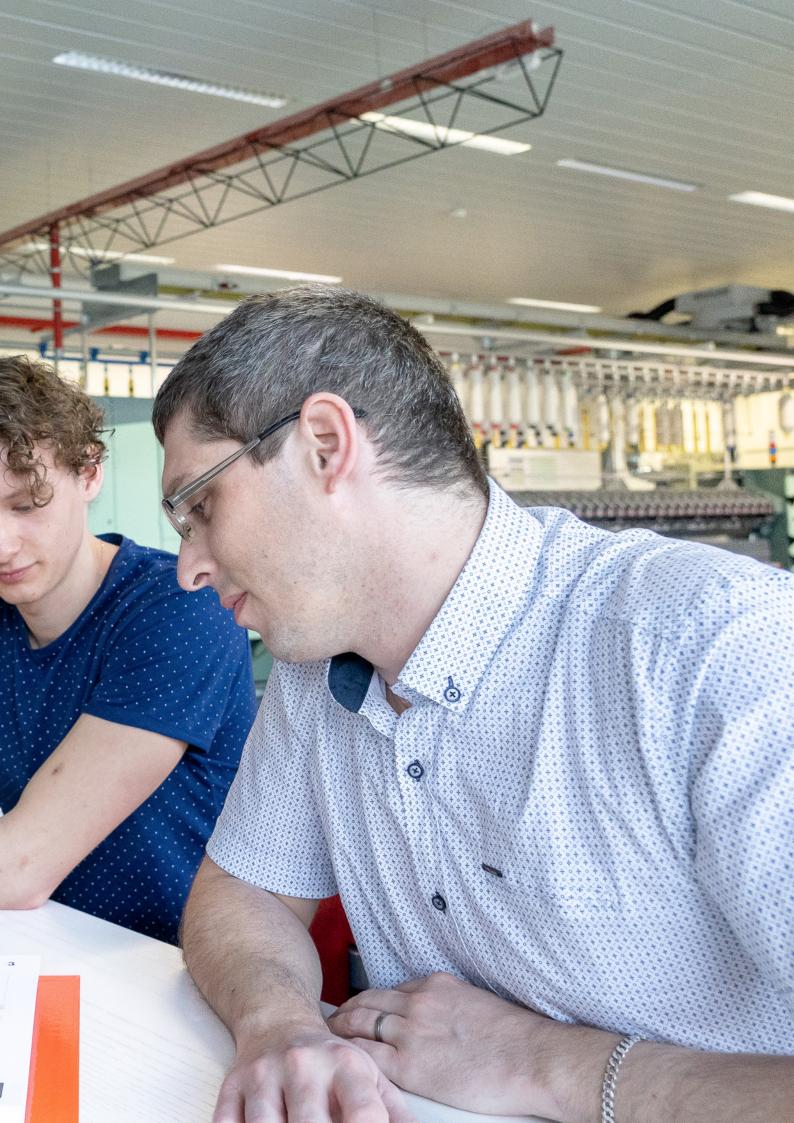
• 5 days

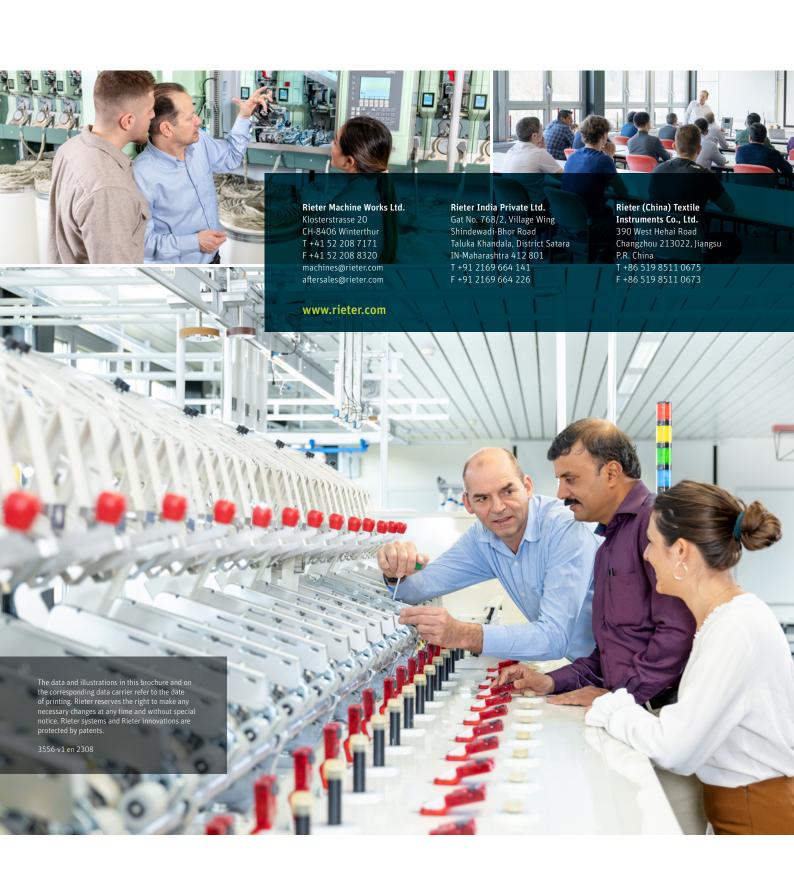
Target audience:

 Supervisors, middle management and above from production, quality, maintenance, utility

Number of participants:

- Up to a maximum of 12
- INmill ×
- INclass ✓


Mill management summit classroom training


Scan here and register for your training.

l.ead.me/be3nZo

